Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Chinese Journal of Pathology ; (12): 103-107, 2022.
Article in Chinese | WPRIM | ID: wpr-935484

ABSTRACT

Objective: To investigate the relationship between the expression of four mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2) and NTRK genetic fusions in colorectal cancer. Methods: The paraffin-embedded tissue blocks of 830 cases of colorectal cancer were collected at the Affiliated Drum Tower Hospital, Nanjing University Medical School, China, from 2015 to 2019. Immunohistochemical and fluorescence in situ hybridization(FISH) method were used respectively to detect the expression of mismatch repair proteins and the break-apart of NTRKs; and the relationship between the expression of mismatch repair proteins and the NTRK genetic fusions was analyzed. Results: The overall mismatch repair protein deficiency (dMMR) rate was 9.88% (82/830), the mismatch repair proteins proficiency (pMMR) rate was 90.12%(748/830). The total deficiency rate of MLH1 protein was 9.04% (75/830), hPMS2 protein deficiency rate was 9.04% (75/830), MSH2 protein deficiency rate was 2.53% (21/830), MSH6 protein deficiency rate was 4.10% (34/830), the deficiency rate of synchronous MLH1 and PMS2 were 8.67% (72/830) and the deficiency rate of synchronous MSH2 and MSH6 were 2.17% (18/830). The dMMR group was associated with tumor location, different histological subgroups, tumor differentiation, AJCC stage and N stage (P<0.05). There were six cases (7.32%) carrying NTRK fusion by FISH among the 82 cases of dMMR, but only seven cases (0.94%) carrying NTRK fusion among the 748 cases of PMMR. The NTRKs translocation by FISH in all 13 cases were further confirmed by next generation sequencing. Among the clinicopathological characteristics, only differentiation showed significant difference between NTRK fusion positive and negative groups (P<0.05). More importantly, NTRK fusion was enriched in dMMR group (7.32% vs. 0.94%). Conclusion: In dMMR colorectal cancer group, the prevalence of NTRK fusion is higher than that in pMMR group.


Subject(s)
Humans , Colonic Neoplasms , Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics , In Situ Hybridization, Fluorescence , Mismatch Repair Endonuclease PMS2/metabolism , MutL Protein Homolog 1/metabolism , MutS Homolog 2 Protein/metabolism
2.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 501-503, 2012.
Article in Chinese | WPRIM | ID: wpr-316628

ABSTRACT

<p><b>OBJECTIVE</b>To explore and evaluate the application of epiglottis with sternohyoid muscle in the surgery for laryngeal cancer.</p><p><b>METHODS</b>Two fifty patients with laryngeal cancer were treated by partial laryngectomy and the laryngeal defects were reconstructed by epiglottic flap and sternohyoid muscle fascia flap. The staging of tumors: T2N0M0 23 cases, T3N1M0 14 cases, T3N2M0 13 cases. All of them received post radical radiotherapy with average 60 Gy. The patients were followed up for 3 to 5 years. Thirty patients underwent neck dissection.</p><p><b>RESULTS</b>The three and five years survival rates were 90% and 80% respectively. The total cases eat breath pronounced well. The decannulation rate was 96%.</p><p><b>CONCLUSION</b>After partial laryngectomy in laryngeal cancer epiglottic flap and sternohyoid muscle fascia flap were performed reconstruction of laryngeal function.</p>


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Carcinoma, Squamous Cell , General Surgery , Epiglottis , Transplantation , Hyoid Bone , Laryngeal Neoplasms , General Surgery , Muscle, Skeletal , Transplantation , Plastic Surgery Procedures , Methods , Retrospective Studies , Sternum , Surgical Flaps
3.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 434-436, 2011.
Article in Chinese | WPRIM | ID: wpr-272573

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the brain oxidative stress injury induced by nano-alumina particles in ICR mice.</p><p><b>METHODS</b>Sixty male ICR mice were randomly divided into 6 groups: control group, solvent control group, 100 mg/kg micro-alumina particles group, 3 groups exposed to nano-alumina particles at the doses of 50, 100 and 200 mg/kg. The mice were exposed by nasal drip for 30 days. Then levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-PX) in brain tissues of mice were detected.</p><p><b>RESULTS</b>There was no difference of SOD activity in mouse brain between control group [(17.32 +/- 6.23)U/gHb] and 50 mg/kg nano-alumina particles group [(17.89 +/- 1.82) U/gHb]. The SOD activity [(4.93 +/- 2.30)U/gHb] in 200 mg/kg nano-alumina particles group was significantly lower than that in control group (P < 0.05). The MDA levels in 3 nano-alumina particles groups were (0.76 +/- 0.13), (1.00 +/- 0.30) and (1.16 +/- 0.39)nmol/ml, respectively, which were significantly higher than that [( 0.24 +/- 0.09)nmol/ml] in control group (P < 0.05). The GSH levels in 3 nano-alumina particles groups were (0.72 +/- 0.08), (0.55 +/- 0.19) and (0.61 +/- 0.20)mg/gpro, respectively, which were significantly lower than that [(1.55 +/- 0.34)mg/gpro]] in control group (P < 0.05). The CAT activity in 50 and 100 mg/kg nano-alumina particles groups were (10.40 +/- 3.84) and (10.40 +/- 2.00)U/mgpro, respectively, which were significantly higher than that [(5.79 +/- 0.96) U/mgpro] in control group (P < 0.05). The CAT activity [(3.25 +/- 1.04)U/mgpro] in 200 mg/kg nano-alumina particles group was significantly lower than that in control group (P < 0.05 ).</p><p><b>CONCLUSION</b>Nano-alumina particles can induce the oxidative stress damage in brain tissues of mice.</p>


Subject(s)
Animals , Male , Mice , Aluminum Oxide , Toxicity , Cerebral Cortex , Metabolism , Glutathione Peroxidase , Metabolism , Malondialdehyde , Metabolism , Mice, Inbred ICR , Nanoparticles , Toxicity , Oxidative Stress , Superoxide Dismutase , Metabolism
4.
Chinese Journal of Preventive Medicine ; (12): 785-789, 2010.
Article in Chinese | WPRIM | ID: wpr-349942

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effect of nano-alumina on nerve cell viability through different detection kits of cell viability, using micro-alumina and nano-carbon as controls.</p><p><b>METHODS</b>Primary culturing nerve cells of mouse in vitro, which were exposed to 7 doses of 0 µmol/L, 62.5 µmol/L, 125.0 µmol/L, 250.0 µmol/L, 500.0 µmol/L, 1.0 mmol/L, 2.0 mmol/L concentrations of nano-alumina (nano-Al), micro alumina (micro-Al) and nano-carbon (nano-C), detecting cell viability (A(570) values) with CCK-8, MTT and LDH methods.</p><p><b>RESULTS</b>(1) The results of CCK-8 kit showed that, in doses of 250.0 µmol/L - 2.0 mmol/L, the cell viability values of nano-alumina (the values of A(570) were 0.878 ± 0.009, 0.823 ± 0.016, 0.647 ± 0.008, 0.594 ± 0.013, respectively) were significantly lower than that of micro-Al (the values of A(570) were 0.960 ± 0.008, 0.951 ± 0.036, 0.833 ± 0.008, 0.708 ± 0.012, respectively) and nano-C (the values of A(570) were 0.977 ± 0.003, 0.973 ± 0.002, 0.924 ± 0.006, 0.891 ± 0.023, respectively). While, comparing nano-Al with the same dose of micro-Al, there was significant difference (the t values were -0.082, -0.128, -0.186, -0.114, respectively, P < 0.01), and so as to the comparison of nano-Al with the same dose of nano-C (the t values were -0.099, -0.150, -0.277, -0.297, respectively, P < 0.01). (2) MTT results showed that in the doses of 500.0 µmol/L and 1.0 mmol/L, the cell viability of nano-Al (the values of A(570) were 0.648 ± 0.095 and 0.575 ± 0.061) were lower than that of micro-Al (the values of A(570) were 0.830 ± 0.044 and 0.816 ± 0.014) and nano-C (the values of A(570) were 0.889 ± 0.009 and 0.765 ± 0.049), and the differences were significant (nano-Al compared with the same dose of micro-Al, the t values were -0.183 and -0.242, P < 0.01; nano-Al compared with the same dose of nano-C, the t values were -0.241 and -0.190, P < 0.01). (3) LDH results showed that in the dose from 125.0 µmol/L to 2.0 mmol/L, the LDH release of nano-Al group (the values of A(570) were 1.862 ± 0.102, 1.905 ± 0.066, 1.930 ± 0.037, 1.946 ± 0.033, 1.967 ± 0.068, respectively) were higher than that of nano-C (the values of A(570) were 1.484 ± 0.110, 1.559 ± 0.039, 1.663 ± 0.014, 1.732 ± 0.076, 1.765 ± 0.073, respectively), and the differences were significant (the t values were -0.377, 0.346, 0.266, 0.213, 0.202, respectively, P < 0.01). In the dose from 125.0 µmol/L to 1.0 mmol/L, the LDH release of nano-Al group were higher than that of micro-Al (the values of A(570) were 1.578 ± 0.011, 1.639 ± 0.025, 1.727 ± 0.024, 1.808 ± 0.020, respectively), and the differences were significant (the t values were 0.284, 0.266, 0.202, 0.172, respectively, P < 0.01).</p><p><b>CONCLUSION</b>The toxicity of nano-Al is greater than nano-C and micro-Al on the viability of nerve cells; LDH is more suitable for detecting changes of cell viability after the effect of nano-materials than CCK-8 and MTT.</p>


Subject(s)
Animals , Mice , Aluminum Oxide , Toxicity , Cell Proliferation , Cell Survival , Cells, Cultured , Metal Nanoparticles , Toxicity , Mice, Inbred Strains , Neurons , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL